
Smart contract security
audit report

Audit Number：202012161024

Smart Contract Name：

Juggernaut XP (jXP)

Smart Contract Address：

0x10702bEbD7d15507F4Ed2078bC76da44D3BeF060

Smart Contract Address Link：

https://bscscan.com/address/0x10702bEbD7d15507F4Ed2078bC76da44D3BeF060

Start Date：2020.12.15

Completion Date：2020.12.16

Overall Result：Pass（Distinction）

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Audit Categories and Results:

No. Categories Subitems Results

1 Coding Conventions

BEP20 Token Standards Pass

Compiler Version Security Pass

Visibility Specifiers Pass

Gas Consumption Pass

SafeMath Features Pass

Fallback Usage Pass

tx.origin Usage Pass

Deprecated Items Pass

Redundant Code Pass

Overriding Variables Pass

2 Function Call Audit

Authorization of Function Call Pass
Low-level Function (call/delegatecall)
Security Pass

Returned Value Security Pass

selfdestruct Function Security Pass

3 Business Security

Access Control of Owner Pass

Business Logics Pass

Business Implementations Pass

4 Integer Overflow/Underflow - Pass

5 Reentrancy - Pass

6 Exceptional Reachable State - Pass

7 Transaction-Ordering Dependence - Pass

8 Block Properties Dependence - Pass

9 Pseudo-random Number Generator
(PRNG) - Pass

10 DoS (Denial of Service) - Pass

11 Token Vesting Implementation - N/A

12 Fake Deposit - Pass

13 event security - Pass
Note: Audit results and suggestions in code comments

Disclaimer: This audit is only applied to the type of auditing specified in this report and the scope of given in
the results table. Other unknown security vulnerabilities are beyond auditing responsibility. Beosin (Chengdu
LianAn) Technology only issues this report based on the attacks or vulnerabilities that already existed or
occurred before the issuance of this report. For the emergence of new attacks or vulnerabilities that exist or
occur in the future, Beosin (Chengdu LianAn) Technology lacks the capability to judge its possible impact on
the security status of smart contracts, thus taking no responsibility for them. The security audit analysis and
other contents of this report are based solely on the documents and materials that the contract provider has
provided to Beosin (Chengdu LianAn) Technology before the issuance of this report, and the contract
provider warrants that there are no missing, tampered, deleted; if the documents and materials provided by the
contract provider are missing, tampered, deleted, concealed or reflected in a situation that is inconsistent with
the actual situation, or if the documents and materials provided are changed after the issuance of this report,
Beosin (Chengdu LianAn) Technology assumes no responsibility for the resulting loss or adverse effects. The
audit report issued by Beosin (Chengdu LianAn) Technology is based on the documents and materials
provided by the contract provider, and relies on the technology currently possessed by Beosin (Chengdu
LianAn). Due to the technical limitations of any organization, this report conducted by Beosin (Chengdu
LianAn) still has the possibility that the entire risk cannot be completely detected. Beosin (Chengdu LianAn)
disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).

Audit Results Explained:

Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static
Analysis, Typical Case Testing and Manual Review to audit three major aspects of smart contract jXP,
including Coding Standards, Security, and Business Logic. jXP contract passed all audit items. The overall
result is Pass (Distinction). The smart contract is able to function properly. Please find below the basic
information of the smart contract:

1. Basic Token Information

Token name Juggernaut XP

Token symbol jXP

decimals 18

totalSupply Initial total supply is 0(Burnable,
mintable without cap)

Token type BEP20

Table 1 – Basic Token Information

2. Token Vesting Information

N/A

3. Customized Function Audit:

(1) burn function

 Description: As shown in Figure 1, the contract implements the burn function to destroy tokens. Only the

contract owner can call this function to destroy tokens.

Figure 1 burn Function Source Code

(2) mint funciton

 Description: As shown in Figure 2, the contract implements the mint function for token issuance, and

only the contract owner can call this function for token issuance. The contract owner can call this

function to mint a specified amount of tokens to the specified address, and there is no upper limit for

minting.

Figure 2 mint Function Source Code

Audited Source Code with Comments:

/**
*Submitted for verification at BscScan.com on 2020-12-15
*/

/**
*Submitted for verification at BscScan.com on 2020-12-14
*/

pragma solidity 0.5.16;

interface IBEP20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256); // Beosin (Chengdu LianAn) // Declare the

interface of function 'totalSupply'.

/**
* @dev Returns the token decimals.
*/
function decimals() external view returns (uint8); // Beosin (Chengdu LianAn) // Declare the interface of

function 'decimals'.

/**
* @dev Returns the token symbol.
*/
function symbol() external view returns (string memory); // Beosin (Chengdu LianAn) // Declare the

interface of function 'symbol'.

/**
* @dev Returns the token name.
*/
function name() external view returns (string memory); // Beosin (Chengdu LianAn) // Declare the

interface of function 'name'.

/**
* @dev Returns the bep token owner.
*/
function getOwner() external view returns (address); // Beosin (Chengdu LianAn) // Declare the interface

of function 'getOwner'.

/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256); // Beosin (Chengdu LianAn) //

Declare the interface of function 'balanceOf'.

/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*

* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool); // Beosin (Chengdu LianAn)

// Declare the interface of function 'transfer'.

/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address _owner, address spender) external view returns (uint256); // Beosin (Chengdu

LianAn) // Declare the interface of function 'allowance'.

/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool); // Beosin (Chengdu LianAn) //

Declare the interface of function 'approve'.

/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); // Beosin

(Chengdu LianAn) // Declare the interface of function 'transferFrom'.

/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*

* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value); // Beosin (Chengdu LianAn) //

Declare the event 'Transfer'.

/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value); // Beosin (Chengdu

LianAn) // Declare the event 'Approval'.
}

/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
// Beosin (Chengdu LianAn) // Internal function '_msgSender' for getting the caller address.
function _msgSender() internal view returns (address payable) {
return msg.sender;

}
// Beosin (Chengdu LianAn) // Internal function '_msgData' for returning the call data.
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see

https://github.com/ethereum/solidity/issues/2691
return msg.data;

}
}

/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.

*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");

return c;
}

/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");

}

/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;

return c;

}

/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;

}

uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");

return c;
}

/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");

}

/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*

* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold

return c;
}

/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");

}

/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;

}
}

/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.

*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner; // Beosin (Chengdu LianAn) // Declare variable '_owner' for storing the

contract owner.

event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); // Beosin
(Chengdu LianAn) // Declare the event 'OwnershipTransferred'.

/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender; // Beosin (Chengdu LianAn) // Initialize the ownership address.
emit OwnershipTransferred(address(0), msgSender); // Beosin (Chengdu LianAn) // Trigger the

OwnershipTransferred event.
}

/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;

}

/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner"); // Beosin (Chengdu LianAn) //

Modifier, require that the caller of the modified.
_;

}

/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/

function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0)); // Beosin (Chengdu LianAn) // Trigger the event

'OwnershipTransferred'.
_owner = address(0); // Beosin (Chengdu LianAn) // Transfer ownership to zero address.

}

/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);

}

/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "Ownable: new owner is the zero address"); // Beosin (Chengdu

LianAn) // The non-zero address check for 'newOwner'.
emit OwnershipTransferred(_owner, newOwner); // Beosin (Chengdu LianAn) // Trigger the event

'OwnershipTransferred'.
_owner = newOwner; // Beosin (Chengdu LianAn) // Transfer ownership to 'newOwner'.

}
}

contract BEP20Token is Context, IBEP20, Ownable {
using SafeMath for uint256; // Beosin (Chengdu LianAn) // Use the SafeMath library for mathematical

operation. Avoid integer overflow/underflow.

mapping (address => uint256) private _balances; // Beosin (Chengdu LianAn) // Declare the mapping
variable '_balances' for storing the token balance of corresponding address.

mapping (address => mapping (address => uint256)) private _allowances; // Beosin (Chengdu LianAn) //
Declare the mapping variable '_allowances' for storing the allowance between two addresses.

uint256 private _totalSupply; // Beosin (Chengdu LianAn) // Declare the variable '_totalSupply' for
storing the total token supply.
uint8 private _decimals; // Beosin (Chengdu LianAn) // Declare the variable '_decimals' for storing the

token decimals.
string private _symbol; // Beosin (Chengdu LianAn) // Declare the variable '_symbol' for storing the

token symbol.
string private _name; // Beosin (Chengdu LianAn) // Declare the variable '_name' for storing the token

name.

constructor() public {
_name = "Juggernaut XP";
_symbol = "jXP";

_decimals = 18;
//_totalSupply = {{TOTAL_SUPPLY}};
//_balances[msg.sender] = _totalSupply;
//emit Transfer(address(0), msg.sender, _totalSupply);

}

/**
* @dev Returns the bep token owner.
*/
// Beosin (Chengdu LianAn) // Get contract owner.
function getOwner() external view returns (address) {
return owner();

}

/**
* @dev Returns the token decimals.
*/
// Beosin (Chengdu LianAn) // Get token decimals.
function decimals() external view returns (uint8) {
return _decimals;

}

/**
* @dev Returns the token symbol.
*/
// Beosin (Chengdu LianAn) // Get token symbol.
function symbol() external view returns (string memory) {
return _symbol;

}

/**
* @dev Returns the token name.
*/
// Beosin (Chengdu LianAn) // Get token name.
function name() external view returns (string memory) {
return _name;

}

/**
* @dev See {BEP20-totalSupply}.
*/
// Beosin (Chengdu LianAn) // Get the current total amount of tokens.
function totalSupply() external view returns (uint256) {
return _totalSupply;

}

/**
* @dev See {BEP20-balanceOf}.

*/
// Beosin (Chengdu LianAn) // Get the token balance of the specified address.
function balanceOf(address account) external view returns (uint256) {
return _balances[account];

}

/**
* @dev See {BEP20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
// Beosin (Chengdu LianAn) // Token transfer function.
function transfer(address recipient, uint256 amount) external returns (bool) {
_transfer(_msgSender(), recipient, amount); // Beosin (Chengdu LianAn) // Call the internal function

'_transfer' to transfer tokens.
return true;

}

/**
* @dev See {BEP20-allowance}.
*/
// Beosin (Chengdu LianAn) // Get the allowance between two corresponding addresses.
function allowance(address owner, address spender) external view returns (uint256) {
return _allowances[owner][spender];

}

/**
* @dev See {BEP20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
// Beosin (Chengdu LianAn) // Beware that changing an allowance with this method brings the risk

that someone may use both the old and the new allowance by unfortunate transaction ordering.
// Beosin (Chengdu LianAn) // Using function 'increaseAllowance' and 'decreaseAllowance' to alter

allowance is recommended.
function approve(address spender, uint256 amount) external returns (bool) {
_approve(_msgSender(), spender, amount); // Beosin (Chengdu LianAn) // Call the internal function

'_approve' to change an allowance.
return true;

}

/**
* @dev See {BEP20-transferFrom}.

*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {BEP20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
// Beosin (Chengdu LianAn) // Transfer tokens from one address to another.
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool) {
_transfer(sender, recipient, amount); // Beosin (Chengdu LianAn) // Call the internal function

'_transfer' to transfer tokens.
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "BEP20: transfer

amount exceeds allowance")); // Beosin (Chengdu LianAn) // Call the internal function '_approve' to set
the allowance which 'sender' allowed to 'msg.sender'.

return true;
}

/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {BEP20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
// Beosin (Chengdu LianAn) // Function for updating allowance.
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); // Beosin

(Chengdu LianAn) // Call the internal function '_approve' to update allowance.
return true;

}

/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {BEP20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:

*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
// Beosin (Chengdu LianAn) // Function for updating allowance.
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "BEP20:

decreased allowance below zero")); // Beosin (Chengdu LianAn) // Call the internal function '_approve' to
update allowance.

return true;
}

/**
* @dev Creates `amount` tokens and assigns them to `msg.sender`, increasing
* the total supply.
*
* Requirements
*
* - `msg.sender` must be the token owner
*/
// Beosin (Chengdu LianAn) // Mint tokens to specified address. Only the contract owner can call

this function.
function mint(address account,uint256 amount) public onlyOwner returns (bool) {
_mint(account, amount); // Beosin (Chengdu LianAn) // Call the internal function '_mint' to mint

tokens.
return true;

}

/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
// Beosin (Chengdu LianAn) // Internal function for transferring tokens from 'sender' to 'recipient'.
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "BEP20: transfer from the zero address"); // Beosin (Chengdu LianAn)

// The non-zero address check for 'sender'.
require(recipient != address(0), "BEP20: transfer to the zero address"); // Beosin (Chengdu LianAn) //

The non-zero address check for 'recipient'. Avoid losing transferred tokens.
// Beosin (Chengdu LianAn) // Alter the balances of corresponding addresses and triggers the event

'Transfer' to complete the 'transfer' operation.
_balances[sender] = _balances[sender].sub(amount, "BEP20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);

}

/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
// Beosin (Chengdu LianAn) // Internal function for minting tokens.
function _mint(address account, uint256 amount) internal {

require(account != address(0), "BEP20: mint to the zero address"); // Beosin (Chengdu LianAn) // The
non-zero address check for 'account'.

_totalSupply = _totalSupply.add(amount); // Beosin (Chengdu LianAn) // Alter the total supply of
token.

_balances[account] = _balances[account].add(amount); // Beosin (Chengdu LianAn) // Alter the token
balance of 'account'.

emit Transfer(address(0), account, amount); // Beosin (Chengdu LianAn) // Trigger the event
'Transfer'.
}

/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
// Beosin (Chengdu LianAn) // Internal functions for destroying tokens.
function _burn(address account, uint256 amount) internal {

require(account != address(0), "BEP20: burn from the zero address"); // Beosin (Chengdu LianAn) //
The non-zero address check for 'account'.

_balances[account] = _balances[account].sub(amount, "BEP20: burn amount exceeds balance"); //
Beosin (Chengdu LianAn) // Alter the token balance of 'account'.

_totalSupply = _totalSupply.sub(amount); // Beosin (Chengdu LianAn) // Alter the total supply of
token.

emit Transfer(account, address(0), amount); // Beosin (Chengdu LianAn) // Trigger the event
'Transfer'.
}

// Beosin (Chengdu LianAn) // Function for destroying tokens.
function burn(uint256 amount) public onlyOwner returns (bool) {
_burn(_msgSender(), amount); // Beosin (Chengdu LianAn) // Call the internal function '_burn' to

destroy tokens.
return true;

}

/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
// Beosin (Chengdu LianAn) // Internal function for setting the allowance which 'owner' allowed to

'spender'.
function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "BEP20: approve from the zero address"); // Beosin (Chengdu LianAn) //

The non-zero address check for 'owner'.
require(spender != address(0), "BEP20: approve to the zero address"); // Beosin (Chengdu LianAn) //

The non-zero address check for 'spender'.

_allowances[owner][spender] = amount; // Beosin (Chengdu LianAn) // Sets the allowance which
'owner' allowed to 'spender' as 'amount'.

emit Approval(owner, spender, amount); // Beosin (Chengdu LianAn) // Trigger the event 'Approval'.
}

/**
* @dev Destroys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See {_burn} and {_approve}.
*/
// Beosin (Chengdu LianAn) // Redundant code, it is recommended to delete.
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount); // Beosin (Chengdu LianAn) // Call the internal function '_burn' to

implement '_burnFrom' operation.

//_approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "BEP20: burn
amount exceeds allowance")); // Beosin (Chengdu LianAn) // This line of code in the _burnFrom function
cannot be commented out, which will affect the function of the _burnFrom function.
}

}
// Beosin (Chengdu LianAn) // Recommend the main contract to inherit 'Pausable' module to grant
owner the authority of pausing all transactions when serious issue occurred.

Official Website

https://lianantech.com

E-mail

vaas@lianantech.com

Twitter

https://twitter.com/Beosin_com

http://lianantech.com

